Does PZP result in wild herds with lower immune systems and potential for die-offs?

PM Tule Elk Males FIghting by austlee

PZP is an immunocontraceptive and pesticide which causes an immune reaction to reject fertilization, while the females still come into estrus. Besides wrecking havoc on the immune system, injecting herds with PZP results in more fighting between males and many other behavior abnormalities.

Tule elk in Pt. Ryes National Seashore (Marin County, California) were part of a PZP (Porcine Zona Pellucida) experiment. Several years later there was a strange die-off.

Wildlife groups blamed park service management for leaving the elk fenced in during a drought–claiming that was the reason for the die-off.

Park service officials said the tule elk had water during the die-off.

“Some wildlife advocates have termed the situation a “die-off” and accuse the park service of allowing the elk to perish behind the fence that prevents them from finding enough food and water. Park service officials have a different view of what caused the population drop, and are hoping that new data will help address these concerns, especially as visitor interest peaks during the fall rutting season.” from: https://baynature.org/articles/on-the-fence/

Listen to Wildlife Ecologist Dave Press Discusses Tomales Point Elk and mention “there was water in the pond up there . . .” at 2:18.

 

It’s time to connect the dots and ask the obvious question: Did PZP lower the herds’ immune system and genetic diversity to the point of making them vulnerable to a die-off?

With suspect data regarding the long-term use of PZP on wild herds, more questions and answers are needed to prevent a similar die-off in America’s wild horses & burros.

With regards to wild horses, keep in mind what Marybeth Devlin wrote about PZP:

“PZP is a registered pesticide whose mechanism-of-action is to cause auto-immune disease. PZP tricks the immune system into producing antibodies that target and attack the ovaries. PZP’s antibodies cause the mare to suffer ovarian dystrophy, oophoritis (inflammation of the ovaries), ovarian cysts, destruction of oocytes in growing follicles, and depletion of resting follicles. Not surprisingly, estrogen levels drop markedly as the ovaries are slowly destroyed. But PZP’s adverse effects are not limited to the individual animal. As a recent study — which included the Little Book Cliffs, Colorado herd and the McCullough Peaks, Wyoming herd — found, PZP extends the birthing season to nearly year-round. Out-of-season births put the life of the foals and the mares at risk. Further, the same study disclosed that the pesticide causes a delay lasting 411.3 days (1.13 years) per each year-of-treatment before mares recover their fertility after suspension of PZP. However, some mares never recover — they are left permanently sterile, and quickly too. Indeed, yet another study found that sterility could occur in some mares from just three years of PZP injections or from just one treatment if the pesticide were given to a filly before she reached puberty. Because PZP messes with the immune system, it ironically works “best” — sterilizes faster — if the mare has a strong immune system. But, conversely, PZP may not work at all in mares whose immune function is weak or depressed. So, the pesticide discriminates against the very horses that Nature has best equipped for survival against disease while favoring and selecting for the immuno-compromised. Worse yet, tests performed via radioimmunoassay indicated that PZP antibodies are transferred from mother to young via the placenta and milk. The transferred antibodies cross-react with and bind to the zonae pellucidae of female offspring, as demonstrated by immunofluorescent techniques.”  [From: http://protectmustangs.org/?p=8529]

 

Pm PZP Darts

Links of interest™:

Immunocontraception (Wikipedia): https://en.wikipedia.org/wiki/Immunocontraception

“Whenever an immune response is provoked, there is some risk of autoimmunity. Therefore immunocontraception trials typically check for signs of autoimmune disease.[17] One concern with zona pellucida vaccination, in particular, is that in certain cases it appears to be correlated with ovarian pathogenesis.[2] However, ovarian disease has not been observed in every trial of zona pellucida vaccination, and when observed, has not always been irreversible.[18]”

 

Autoimmune disease (Wikipedia): https://en.wikipedia.org/wiki/Autoimmune_disease 

“Autoimmune diseases arise from an abnormal immune response of the body against substances and tissues normally present in the body (autoimmunity). . .”

 

ZonaStat-H is the EPA restricted-use pesticide–PZP–for wild horses and burros the registrant calls “pests”: http://www3.epa.gov/pesticides/chem_search/reg_actions/pending/fs_PC-176603_01-Jan-12.pdf

 

Tule elk: http://www.nps.gov/pore/learn/nature/tule_elk.htm

 

Tule elks at Pt. Reyes National Seashore (National Park Service): http://www.nps.gov/pore/getinvolved/supportyourpark/upload/volunteer_docent_info_tule_elk_elkmanagement_v5.0_1.pdf

 

Challenges face tule elk management in Point Reyes National Seashore  http://www.mercurynews.com/pets-animals/ci_28311296/challenges-face-tule-elk-management-point-reyes-national

“Earlier this year park service officials revealed that more than 250 tule elk died inside the fenced area over a two-year period, in part because pools that the herds rely on for water had gone dry. Meanwhile, ranchers are complaining about the free-range elk getting on their land and eating grass and drinking water intended for their dairy cattle and other agricultural operations.”

 

Paratuberculosis or Johne’s disease (Wikipedia): https://en.wikipedia.org/wiki/Paratuberculosis

 

Testing for Mycobacterium avium subsp. paratuberculosis infection in asymptomatic free-ranging tule elk from an infected herd.  http://www.ncbi.nlm.nih.gov/pubmed/12910759

“Forty-five adult tule elk (Cervus elaphus nannodes) in good physical condition were translocated from a population located at Point Reyes National Seashore, Marin County (California, USA), to a holding pen 6 mo prior to release in an unfenced region of the park. Because infection with Mycobacterium avium subsp. paratuberculosis (Mptb) had been reported in the source population, the translocated elk underwent extensive ante-mortem testing using three Johne’s disease assays: enzyme linked immunosorbent assay (ELISA); agar gel immunodiffusion assay (AGID), and fecal culture. Isolation of Mptb was made from fecal samples in six of 45 elk (13%). All AGID results were negative while ELISA results for 18 elk (40%) were considered elevated. Elevated ELISA results or Mptb isolation from fecal samples were obtained for 22 of 45 elk (49%); these elk were euthanized and necropsied. Mycobacterium avium subsp. paratuberculosis was isolated from tissue in 10 of 22 euthanized elk (45%); of these 10 cases of confirmed infection, eight had elevated ELISA results (80%) and four were fecal culture positive (40%). One of 10 cases had histopathologic lesions consistent with Mptb infection. Mycobacterium avium subsp. paratuberculosis was also isolated from tissue from one of eight fetuses sampled. The number of tule elk found to be infected was unexpected, both because of the continued overall health of the source herd and the normal clinical status of all study animals.”

 

Mycobacterium avium subspecies paratuberculosis and Mycobacterium avium subsp. avium infections in a tule elk (Cervus elaphus nannodes) herd. 2006. http://www.ncbi.nlm.nih.gov/pubmed/17255437 

Abstract
“Between 2 August and 22 September 2000, 37 hunter-killed tule elk (Cervus elaphus nannodes) were evaluated at the Grizzly Island Wildlife Area, California, USA, for evidence of paratuberculosis. Elk were examined post-mortem, and tissue and fecal samples were submitted for radiometric mycobacterial culture. Acid-fast isolates were identified by a multiplex polymerase chain reaction (PCR) that discriminates among members of the Mycobacterium avium complex (MAC). Histopathologic evaluations were completed, and animals were tested for antibodies using a Johne’s enzyme-linked immunosorbent assay (ELISA) and agar gel immunodiffusion. In addition, 104 fecal samples from tule elk remaining in the herd were collected from the ground and submitted for radiometric mycobacterial culture. No gross lesions were detected in any of the hunter-killed animals. Mycobacterium avium subsp. paratuberculosis (MAP) was cultured once from ileocecal tissue of one adult elk and was determined to be a strain (A18) found commonly in infected cattle. One or more isolates of Mycobacterium avium subsp. avium (MAA) were isolated from tissues of five additional adult elk. Gastrointestinal tract and lymph node tissues from 17 of the 37 elk (46%) examined had histopathologic lesions commonly seen with mycobacterial infection; however, acid-fast bacteria were not observed. All MAC infections were detected from adult elk (P = 0.023). In adult elk, a statistically significant association was found between MAA infection and ELISA sample-to-positive ratio (S/P) > or = 0.25 (P=0.021); four of five MAA culture-positive elk tested positive by ELISA. Sensitivity and specificity of ELISA S/P > or = 0.25 for detection of MAA in adult elk were 50% and 93%, respectively. No significant associations were found between MAC infection and sex or histopathologic lesions. Bacteriologic culture confirmed infection with MAP and MAA in this asymptomatic tule elk herd. The Johne’s ELISA was useful in signaling mycobacterial infection on a population basis but could not discriminate between MAA and MAP antibodies. The multiplex PCR was useful in discriminating among the closely related species belonging to MAC.
Between 2 August and 22 September 2000, 37 hunter-killed tule elk (Cervus elaphus nannodes) were evaluated at the Grizzly Island Wildlife Area, California, USA, for evidence of paratuberculosis. Elk were examined post-mortem, and tissue and fecal samples were submitted for radiometric mycobacterial culture. Acid-fast isolates were identified by a multiplex polymerase chain reaction (PCR) that discriminates among members of the Mycobacterium avium complex (MAC). Histopathologic evaluations were completed, and animals were tested for antibodies using a Johne’s enzyme-linked immunosorbent assay (ELISA) and agar gel immunodiffusion. In addition, 104 fecal samples from tule elk remaining in the herd were collected from the ground and submitted for radiometric mycobacterial culture. No gross lesions were detected in any of the hunter-killed animals. Mycobacterium avium subsp. paratuberculosis (MAP) was cultured once from ileocecal tissue of one adult elk and was determined to be a strain (A18) found commonly in infected cattle. One or more isolates of Mycobacterium avium subsp. avium (MAA) were isolated from tissues of five additional adult elk. Gastrointestinal tract and lymph node tissues from 17 of the 37 elk (46%) examined had histopathologic lesions commonly seen with mycobacterial infection; however, acid-fast bacteria were not observed. All MAC infections were detected from adult elk (P = 0.023). In adult elk, a statistically significant association was found between MAA infection and ELISA sample-to-positive ratio (S/P) > or = 0.25 (P=0.021); four of five MAA culture-positive elk tested positive by ELISA. Sensitivity and specificity of ELISA S/P > or = 0.25 for detection of MAA in adult elk were 50% and 93%, respectively. No significant associations were found between MAC infection and sex or histopathologic lesions. Bacteriologic culture confirmed infection with MAP and MAA in this asymptomatic tule elk herd. The Johne’s ELISA was useful in signaling mycobacterial infection on a population basis but could not discriminate between MAA and MAP antibodies. The multiplex PCR was useful in discriminating among the closely related species belonging to MAC.”

 

Epizootic of paratuberculosis in farmed elk http://www.johnes.org/handouts/files/Elk_outbreak.pdf

 

TESTING FOR MYCOBACTERIUM AVIUM SUBSP. PARATUBERCULOSIS INFECTION IN ASYMPTOMATIC FREE-RANGING TULE ELK FROM AN INFECTED HERD (Journal of Wildlife Diseases, : http://www.bioone.org/doi/pdf/10.7589/0090-3558-39.2.323

 

Immuno-Contraception Research for Managing Tule Elk Population – Phase I Scheduled to Begin on August 6, 1997 http://www.nps.gov/pore/learn/news/newsreleases_19970805_elkimmunocontraception97.htm

“. . . Funding for tule elk projects has come from a variety of sources. To date, monetary support and in-kind services for the tule elk project has been received from the Rocky Mountain Elk Foundation, Point Reyes National Seashore Association, Committee for the Preservation of Tule Elk, California Department of Fish and Game, The Humane Society of the United States (HSUS), University of California at Davis, the National Park Service Natural Resource Preservation Program and In Defense of Animals.” [Evidently Suzanne Roy, currently the Director of the American Wild Horse Preservation Campaign–who pushes PZP based management–was working for IDA at the time.]

 

Immuno-Contraception Research for Managing Tule Elk Population – Phase II Scheduled to Begin on June 15, 1998  http://www.nps.gov/pore/learn/news/newsreleases_19980615_elkimmunocontraception98.htm

“. . . During the second phase of the contraceptive research project, the first vaccine will be administered by direct syringe injection. To administer the injection, 30 elk will be captured from a helicopter and hobbled by ground crews. Scientists will gather data on the individual elk and place a radio collar on each of the elk. The collar will allow scientists to follow the individual elk to determine the effectiveness of the contraceptive. After several weeks, a booster shot will be remotely administered, from ranges of 30 to 150 feet, by means of self-injecting darts. The darts are brightly colored and easily retrieved. A single annual booster inoculation will be administered to continue contraceptive effects for successive breeding seasons.”

 

Use of porcine zona pellucida (PZP) vaccine as a contraceptive agent in free-ranging tule elk (Cervus elaphus nannodes). published 2002: http://www.ncbi.nlm.nih.gov/pubmed/12220156 

Abstract (note only a 5 year study. Why aren’t they studying the truly long-term effects?)
The potential for the application of porcine zona pellucida (PZP) immunocontraception in wildlife population management has been tested over a 15 year period and promises to provide a useful wildlife management tool. These studies have provided evidence indicating that the use of PZP immunocontraception in wildlife: (i) is effective at both the physiological and population level (Liu et al., 1989; Kirkpatrick et al., 1996; Turner et al., this supplement); (ii) is deliverable by remote means (Kirkpatrick et al., 1990; Shideler, 2000); (iii) is safe in pregnant animals (Kirkpatrick and Turner, this supplement); (iv) is reversible (Kirkpatrick et al., 1991; Kirkpatrick and Turner, this supplement); (v) results in no long-term debilitating health problems (Kirkpatrick et al., 1995; Turner and Kirkpatrick, this supplement); (vi) has no implications for passage through the food chain (Harlow and Lane, 1988); and (vii) is reasonably inexpensive (J. F. Kirkpatrick, personal communication). This report presents the results of a 5 year study in tule elk (Cervus elaphus nannodes), 3 years of which were on the application of PZP immunocontraception to an expanding elk population living in a wilderness area of Point Reyes National Seashore in Marin County, CA…”

 

Copyright Protect Mustangs.org 2016





4 thoughts on “Does PZP result in wild herds with lower immune systems and potential for die-offs?

  1. A meta-analysis by Nettles (1997) linked PZP to auto-immune oophoritis. A study by Varras et al. (2013) disclosed that, in humans, auto-immune oophoritis carries the risk of the patient developing other auto-immune diseases — a correlation that reflects an immune system gone awry.

    But while individual immunity is important, herd-immunity is also essential for survival. Please recall that PZP may not work at all in mares that have weak immune-function. Those mares will get pregnant despite PZP treatments and produce foals that, like their dams, will tend to have low immune-function. Conversely, mares with healthy immune-function react strongly to PZP and quickly become sterilized — perhaps never producing a foal. Thus, PZP tends to select for the immuno-compromised. Consequently, a PZP-treated herd will likely become increasingly populated with horses that have weak immune-function. Such a herd will be less able to fight off even common infections, putting it at risk for a die-off.

  2. Anything at all that will harm or hinder the PROTECTED Wild Horses should be banned and stopped there should be no use of anything at all in anyway that can or will harm our wildlife – Respect & Protect.

  3. Spending millions of dollars to experiment on protected wild horses and burros while contributing to the wealth of the drug manufacturers is criminal.

    BLM has conducted criminal acts and when this happens a receiver should be appointed to manage in its place until such time as a permanent organization worthy of the American people’s trust is secured.

    The BLM should be defunded immediately. and prosecuted for the thousands of horses the organization has abused and left to go to slaughter.

  4. PZP is totally inappropriate for use on wildlife. Peer reviewed studies which should be done before this sort of work are conspiciously absent, leading to the conclusion that this just a haphazard bit of BLM nonsense aimed at reducing wildlife populations that may or may not interfere with BLM grazing leases.

Leave a Reply

Your email address will not be published. Required fields are marked *