Equine reproductive immunology Ph.D speaks out in 2010 against using PZP on wild horses

PM President Obama Listen to the Science

November 27, 2010

Jared Bybee, Wild Horse and Burro Specialist

Department of the Interior

Bureau of Land Management

Billings Field Office

5001 Southgate Drive

Billings, Montana 59101-4669

VIA FAX: 406-896-5281

RE: Pryor Mountain Wild Horse Range Fertility Control Preliminary Environmental
Assessment Tiered to the Pryor Mountain Wild Horse Range Environmental Assessment and Herd Management Area Plan May 2009 EA DOI-BLM-MT-0010-2011-0004-EA

Dear Jared Bybee:

Background

I appreciate the opportunity to submit comments on the Pryor Mountain Wild Horse Range
Fertility Control Preliminary Environmental Assessment Tiered to the Pryor Mountain Wild
Horse Range Environmental Assessment and Herd Management Area Plan May 2009 EA DOI-BLM-MT-0010-2011-0004-EA. My background is in equine reproductive immunology and wildlife conservation. I applaud the Billings Field Office of the Bureau of Land Management (BLM) for a thoughtful approach to this issue. Cover letter 4700 (010.JB) dated November 2010 and signed by James M. Sparks, Field Manager states that the BLM would consider comments and revision to the EA or unsigned FONSI as appropriate. I urge a “no action alternative” as outlined on page 7 and 8 of the EA. This request is based on two pieces of new scientific evidence about effects of current immuno-contraception use.

Porcine Zona Pellucida (PZP) Contraception

The proposed action as stated on page 7 of this EA would exempt “mares ages 5-10 unless they have produced foals, or are part of a large bloodline.” This is reminiscent of the approach taken with the Assateague Island wild horse population. It is a compromise approach to this issue, in comparison to placing all mares on PZP. However a recent study shows that mitochondrial DNA diversity is low in the Assateague Island horse herd (Eggert et al. 2010). Since mitochondrial DNA is inherited from the mother (mare), this is evidence that female inherited genetics on Assateague Island wild horses is under represented. It is imperative that this be assessed before rolling out a similar management plan for the Pryor Mountain wild horses.

There is a recent Princeton University study on PZP effects. Consecutive PZP applications, analogous to the proposed action plan in this EA, showed that mares gave birth later in the season, and were cycling into the fall months (Nunez et al. 2010). In a state like Montana where freezing temperatures are found in the fall, this can have serious and long term effects on foal survivorship.

I must include a statement on long term consecutive use of PZP. Any form of PZP contraception is not completely reversible in mares depending on the length of use of PZP. Contraception can only be reversed when the antibody titer decreases to 50-60% of the positive reference sera (Liu et al. 2005). Mares treated for 7 consecutive years do not return to viable fertility (Kirkpatrick and Turner 2002; Kirkpatrick et al. 2009). The issue of reversible contraception is very important to be able to maintain wild equines in the United States. Long term treatment with PZP has inherent negative potential for this herd.

I am requesting a new look at the proposed fertility control action for the Pryor Mountain wild horses.

Sincerely,

Christine DeCarlo, Ph.D.

Lori S. Eggert, David M. Powell, et al. (2010). “Pedigrees and the Study of the Wild Horse
Population of Assateague Island National Seashore.” Journal of Wildlife Management
74(5): 963-973.

J. F. Kirkpatrick, A. Rowan, et al. (2009). “The practical side of immunocontraception: zona
proteins and wildlife.” J Reprod Immunol 83(1-2): 151-7.

J. F. Kirkpatrick and A. Turner (2002). “Reversibility of action and safety during pregnancy of immunization against porcine zona pellucida in wild mares (Equus caballus).” Reprod
Suppl 60: 197-202.

I. K. Liu, J. W. Turner, Jr., et al. (2005). “Persistence of anti-zonae pellucidae antibodies
following a single inoculation of porcine zonae pellucidae in the domestic equine.”
Reproduction 129(2): 181-90.

Cassandra M. V. Nunez, James S. Adelman, et al. (2010). “Immunoctraception in Wild Horses (Equus caballus) Extends Reproductive Cycling Beyond the Normal Breeding Season.” PLos ONE 5(10): 1-10.

(Posted for educational purposes)

 

Wild horses as native north American wildlife

 

© Cynthia Smalley

Statement for the 109th Congress (1st Session) in support of H.R. 297
A Bill in the House of Representatives
House Committee on Resources
Introduced January 25, 2005

To restore the prohibition on the commercial sale and slaughter of wild free-roaming horses and burros.

BY JAY F. KIRKPATRICK, PH.D. AND PATRICIA M. FAZIO, PH.D.

Are wild horses truly “wild,” as an indigenous species in North America, or are they “feral” weeds – barnyard escapees, far removed genetically from their prehistoric ancestors? The question at hand is, therefore, whether or not modern horses, Equus caballus, should be considered native wildlife.

The genus Equus, which includes modern horses, zebras, and asses, is the only surviving genus in a once diverse family of horses that included 27 genera. The precise date of origin for the genus Equus is unknown, but evidence documents the dispersal of Equus from North America to Eurasia approximately 2-3 million years ago and a possible origin at about 3.4-3.9 million years ago. Following this original emigration, several extinctions occurred in North America, with additional migrations to Asia (presumably across the Bering Land Bridge), and return migrations back to North America, over time. The last North American extinction occurred between 13,000 and 11,000 years ago.1 Had it not been for previous westward migration, over the land bridge, into northwestern Russia (Siberia) and Asia, the horse would have faced complete extinction. However, Equus survived and spread to all continents of the globe, except Australia and Antarctica.

In 1493, on Columbus’ second voyage to the Americas, Spanish horses, representing E. caballus, were brought back to North America, first in the Virgin Islands, and, in 1519, they were reintroduced on the continent, in modern-day Mexico, from where they radiated throughout the American Great Plains, after escape from their owners.2

Critics of the idea that the North American wild horse is a native animal, using only paleontological data, assert that the species, E. caballus (or the caballoid horse), which was introduced in 1519, was a different species from that which disappeared 13,000 to 11,000 years before. Herein lies the crux of the debate. However, the relatively new (27-year-old) field of molecular biology, using mitochondrial-DNA analysis, has recently found that the modern or caballine horse, E. caballus, is genetically equivalent to E. lambei, a horse, according to fossil records, that represented the most recent Equus species in North America prior to extinction. Not only is E. caballus genetically equivalent to E. lambei, but no evidence exists for the origin of E. caballus anywhere except North America.3

According to the work of Uppsala University researcher Ann Forstén, of the Department of Evolutionary Biology, the date of origin, based on mutation rates for mitochondrial-DNA, for E. caballus, is set at approximately 1.7 million years ago in North America. Now the debate becomes one of whether the older paleontological fossil data or the modern molecular biology data more accurately provide a picture of horse evolution. The older taxonomic methodologies looked at physical form for classifying animals and plants, relying on visual observations of physical characteristics. While earlier taxonomists tried to deal with the subjectivity of choosing characters they felt would adequately describe, and thus group, genera and species, these observations were lacking in precision. Reclassifications are now taking place, based on the power and objectivity of molecular biology. If one considers primate evolution, for example, the molecular biologists have provided us with a completely different evolutionary pathway for humans, and they have described entirely different relationships with other primates. None of this would have been possible prior to the methodologies now available through mitochondrial-DNA analysis.

Carles Vilà, also of the Department of Evolutionary Biology at Uppsala University, has corroborated Forstén’s work. Vilà et al have shown that the origin of domestic horse lineages was extremely widespread, over time and geography, and supports the existence of the caballoid horse in North American before its disappearance.4

Finally, the work of Hofreiter et al, 5 examining the genetics of the so-called E. lambei from the permafrost of Alaska, found that the variation was within that of modern horses, which translates into E. lambei actually being E. caballus, genetically. The molecular biology evidence is incontrovertible and indisputable. The fact that horses were domesticated before they were reintroduced matters little from a biological viewpoint. They are the same species that originated here, and whether or not they were domesticated is quite irrelevant. Domestication altered little biology, and we can see that in the phenomenon called “going wild,” where wild horses revert to ancient behavioral patterns. James Dean Feist dubbed this “social conservation” in his paper on behavior patterns and communication in the Pryor Mountain wild horses. The reemergence of primitive behaviors, resembling those of the plains zebra, indicated to him the shallowness of domestication in horses.6

The issue of feralization and the use of the word “feral” is a human construct that has little biological meaning except in transitory behavior, usually forced on the animal in some manner. Consider this parallel. E. Przewalski (Mongolian wild horse) disappeared from Mongolia a hundred years ago. It has survived since then in zoos. That is not domestication in the classic sense, but it is captivity, with keepers providing food and veterinarians providing health care. Then they were released a few years back and now repopulate their native range in Mongolia. Are they a reintroduced native species or not? And what is the difference between them and E. caballus in North America, except for the time frame and degree of captivity?

The key element in describing an animal as a native species is (1) where it originated; and (2) whether or not it co-evolved with its habitat. Clearly, E. caballus did both, here in North American. There might be arguments about “breeds,” but there are no scientific grounds for arguments about “species.” The non-native, feral, and exotic designations given by agencies are not merely reflections of their failure to understand modern science, but also a reflection of their desire to preserve old ways of thinking to keep alive the conflict between a species (wild horses) with no economic value anymore (by law) and th economic value of commercial livestock. Native status for wild horses would place these animals, under law, within a new category for management considerations. As a form of wildlife, embedded with wildness, ancient behavioral patterns, and the morphology and biology of a sensitive prey species, they may finally be released from the “livestock-goneloose” appellation.

_________________________________

Jay F. Kirkpatrick, Director, The Science and Conservation Center, Billings, Mondana, holds a Ph.D. in reproductive physiology from the College of Veterinary Medicine at Cornell University. Patricia M. Fazio is currently a freelance environmental writer and editor residing in Cody, Wyoming and holds a B.S. in animal husbandry/biology from Cornell University, and M.S. in environmental history from the University of Wyoming, and a Ph.D. in environmental history from Texas A&M University, College Station.

1 “Horse Evolution” by Kathleen Hunt from www.onthenet.com.au/~stear/horse_evolution.htm; Bruce J. MacFadden, Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae (New York: Cambridge University Press, 1992), p. 205.

2 Patricia Mabee Fazio, “The Fight to Save a Memory: Creation of the Pryor Mountain Wild Horse Range (1968) and Evolving Federal Wild Horse Protection through 1971,” doctoral dissertation, Texas A&M University, College Station, 1995, p. 21.

3 Ann Forstén, 1992. Mitochondrial-DNA timetable and the evolution of Equus: Comparison of molecular and paleontological evidence. Ann. Zool. Fennici 28: 301-309.

4 Carles Vilà, Jennifer A. Leonard, Anders Götherström, Stefan Marklund, Kaj Sandberg, Kerstin Lidén, Robert K. Wayne, Hans Ellegren. 2001. Widespread origins of domestic horse lineages. Science 291: 474- 477.

5 Hofreiter, Michael; Serre, David; Poinar, Hendrik N.; Kuch, Melanie; Pääbo, Svante. 2001. Ancient DNA. Nature Reviews Genetics. 2(5), 353-359.

6 James Dean Feist and Dale R. McCullough. 1976. Behavior patterns and communication in feral horses. Z. Tierpsychol. 41: 367.

Posted for educational purposes.

Forest Service seeks contactor to take Sheldon wild horses

Public Land and Desert Sky (Photo © Anne Novak, all rights reserved.)

Public Land and Desert Sky (Photo © Anne Novak, all rights reserved.)

Reference number: F14PS00185
Issue date: 02/05/2014
Response due: 03/19/2014 05:00 PM PT

The USFWS is actively seeking qualified Contractors to receive, care for, and find long-term homes for up to 500 feral wild horses and/or burros per year. Contractors may receive horses for placement each year for up to four years. Horses will be captured and removed by the USFWS from the Sheldon National Wildlife Refuge, Denio, NV (Humboldt County). Award will be made to multiple Contractors. Pricing will be based on a per-animal fixed price. Interested contractors must be registered in SAM (System for Award Management) at http://www.sam.gov and complete Online Representations and Certifications (ORCA) at http://www.bpn.gov. This solicitation will be posted to http://www.fedconnect.net on 02/18/14. All technical questions are to be directed to John Kasbohm at (541) 947-3315 and contractual questions to Shannon Blackburn at (503) 872-2825. PROJECT INFORMATION: The successful contractor(s) shall perform scope of work as specified in the Statement of Work.

Set Aside: N/A
NAICS: 813312-Environment, Conservation and Wildlife Organizations
PSC / FSC: F019-NATURAL RESOURCES/CONSERVATION- OTHER WILDLIFE MAN

Contracting office:

FWS, DIVISION OF CONTRACTING AND GE
EASTSIDE FEDERAL COMPLEX
911 NE 11TH AVENUE
PORTLAND, OR 97232-4181

Contact: SHANNON BLACKBURN
Phone:
Fax:
Email: shannon_blackburn@fws.gov

https://www.fedconnect.net/FedConnect/PublicPages/PublicSearch/Public_Opportunities

Wild Horses as Native North American Wildlife

Wild Horses @ Peace (Photo ©Anne Novak, all rights reserved.)

Wild Horses @ Peace (Photo ©Anne Novak, all rights reserved.)

by Jay F. Kirkpatrick, Ph.D. and Patricia M. Fazio, Ph.D. (Revised January 2010)

© 2003‐2010, Drs. Jay F. Kirkpatrick and Patricia M. Fazio. All Rights Reserved.

Are wild horses truly “wild,” as an indigenous species in North America, or are they “feral weeds” – barnyard escapees, far removed genetically from their prehistoric ancestors? The question at hand is, therefore, whether or not modern horses, Equus caballus, should be considered native wildlife.

The question is legitimate, and the answer important. In North America, the wild horse is often labeled as a non‐native, or even an exotic species, by most federal or state agencies dealing with wildlife management, such as the National Park Service, U.S. Fish and Wildlife Service, and the Bureau of Land Management. The legal mandate for many of these agencies is to protect native wildlife and prevent non‐native species from causing harmful effects on the general ecology of the land. Thus, management is often directed at total eradication, or at least minimal numbers. If the idea that wild horses were, indeed, native wildlife, a great many current management approaches might be compromised. Thus, the rationale for examining this proposition, that the horse is a native or non-native species, is significant.

The genus Equus, which includes modern horses, zebras, and asses, is the only surviving genus in a once diverse family of horses that included 27 genera. The precise date of origin for the genus Equus is unknown, but evidence documents the dispersal of Equus from North America to Eurasia approximately 2‐3 million years ago and a possible origin at about 3.4‐3.9 million years ago. Following this original emigration, several extinctions occurred in North America, with additional migrations to Asia (presumably across the Bering Land Bridge), and return migrations back to North America, over time. The last North American extinction probably occurred between 13,000 and 11,000 years ago (Fazio 1995), although more recent extinctions for horses have been suggested. Dr. Ross MacPhee, Curator of Mammalogy at the American Museum of Natural History, and colleagues, have dated the existence of woolly mammoths and horses in North America to as recent as 7,600 years ago. Had it not been for previous westward migration, over the 2 Bering Land Bridge, into northwestern Russia (Siberia) and Asia, the horse would have faced complete extinction. However, Equus survived and spread to all continents of the globe, except Australia and Antarctica.

In 1493, on Columbus’ second voyage to the Americas, Spanish horses, representing E. caballus, were brought back to North America, first in the Virgin Islands, and, in 1519, they were reintroduced on the continent, in modern‐day Mexico, from where they radiated throughout the American Great Plains, after escape from their owners or by pilfering (Fazio 1995).

Critics of the idea that the North American wild horse is a native animal, using only selected paleontological data, assert that the species, E. caballus (or the caballoid horse), which was introduced in 1519, was a different species from that which disappeared between 13,000‐11,000 years before. Herein lies the crux of the debate. However, neither paleontological opinion nor modern molecular genetics support the contention that the modern horse in North America is non‐native.

Equus, a monophyletic taxon, is first represented in the North American fossil record about four million years ago by E. simplicidens, and this species is directly ancestral to later Blancan species about three million years ago (Azaroli and Voorhies 1990). Azzaroli (1992) believed, again on the basis of fossil records, that E. simplicidensgave rise to the late Pliocene E. Idahoensis, and that species, in turn, gave rise to the first caballoid horses two million years ago in North America. Some migrated to Asia about one million years ago, while others, such as E. niobrarensis, remained in North America.

In North America, the divergence of E. caballus into various ecomorphotypes (breeds) included E. caballus mexicanus, or the American Periglacial Horse (also known as E. caballus laurentius Hay, or midlandensis Quinn) (Hibbard 1955). Today, we would recognize these latter two horses as breeds, but in the realm of wildlife, the term used is subspecies. By ecomorphotype, we refer to differing phenotypic or physical characteristics within the same species, caused by genetic isolation in discrete habitats. In North America, isolated lower molar teeth and a mandible from sites of the Irvingtonian age appear to be E. caballus, morphologically. Through most of the Pleistocene Epoch in North America, the commonest species of Equus were not caballines but other lineages (species) resembling zebras, hemiones, and possibly asses (McGrew 1944; Quinn, 1957). 3 Initially rare in North America, caballoid horses were associated with stenoid horses (perhaps ancestral forerunners but certainly distinct species), but between one million and 500,000 years ago, the caballoid horses replaced the stenoid horses because of climatic preferences and changes in ecological niches (Forstén 1988). By the late Pleistocene, the North American taxa that can definitely be assigned to E. caballus are E. caballus alaskae (Azzaroli 1995) and E. caballus mexicanus (Winans 1989 – using the name laurentius). Both subspecies were thought to have been derived from E. niobrarensis (Azzaroli 1995).

Thus, based on a great deal of paleontological data, the origin of E. caballus is thought to be about two million years ago, and it originated in North America. However, the determination of species divergence based on phenotype is at least modestly subjective and often fails to account for the differing ecomorphotypes within a species, described above. Purely taxonomic methodologies looked at physical form for classifying animals and plants, relying on visual observations of physical characteristics. While earlier taxonomists tried to deal with the subjectivity of choosing characters they felt would adequately describe, and thus group, genera and species, these observations were lacking in precision. Nevertheless, the more subjective paleontological data strongly suggests the origin of E. caballus somewhere between one and two million years ago.

Reclassifications are now taking place, based on the power and objectivity of molecular biology. If one considers primate evolution, for example, the molecular biologists have provided us with a completely different evolutionary pathway for humans, and they have described entirely different relationships with other primates. None of this would have been possible prior to the methodologies now available through mitochondrial‐DNA analysis.

A series of genetic analyses, carried out at the San Diego Zoo’s Center for Reproduction in Endangered Species, and based on chromosome differences (Benirschke et al. 1965) and mitochondrial genes (George and Ryder 1986) both indicate significant genetic divergence among several forms of wild E. caballus as early as 200,000‐300,000 years ago. These studies do not speak to the origins of E. caballus per se, but they do point to a great deal of genetic divergence among members of E. caballus by 200,000 to 300,000 years ago. Thus, the origin had to be earlier, but, at the very least, well before the disappearance of the horse in North America between 13,000‐11,000 years ago. 4 The relatively new (30‐year‐old) field of molecular biology, using mitochondrial‐DNA analysis, has recently revealed that the modern or caballine horse, E. caballus, is genetically equivalent to E. lambei, a horse, according to fossil records, that represented the most recent Equus species in North America prior to extinction. Not only is E. caballus genetically equivalent to E. lambei, but no evidence exists for the origin of E. caballus anywhere except North America (Forstén 1992).

According to the work of researchers from Uppsala University of the Department of Evolutionary Biology (Forstén 1992), the date of origin, based on mutation rates for mitochondrial‐DNA, for E. caballus, is set at approximately 1.7 million years ago in North America. This, of course, is very close, geologically speaking, to the 1‐2 million‐year figure presented by the interpretation of the fossil record.

Carles Vilà, also of the Department of Evolutionary Biology at Uppsala University, has corroborated Forstén’s work. Vilà et al. (2001) have shown that the origin of domestic horse lineages was extremely widespread, over time and geography, and supports the existence of the caballoid horse in North American before its disappearance, corroborating the work of Benirschke et al. (1965), George and Ryder (1995), and Hibbard (1955).

A study conducted at the Ancient Biomolecules Centre of Oxford University (Weinstock et al. 2005) also corroborates the conclusions of Forstén (1992). Despite a great deal of variability in the size of the Pleistocene equids from differing locations (mostly ecomorphotypes), the DNA evidence strongly suggests that all of the large and small caballine samples belonged to the same species. The author states, “The presence of a morphologically variable caballine species widely distributed both north and south of the North American ice sheets raises the tantalizing possibility that, in spite of many taxa named on morphological grounds, most or even all North American caballines were members of the same species.”

In another study, Kruger et al. (2005), using microsatellite data, confirms the work of Forstén (1992) but gives a wider range for the emergence of the caballoid horse, of 0.86 to 2.3 million years ago. At the latest, however, that still places the caballoid horse in North America 860,000 years ago. 5 The work of Hofreiter et al. (2001), examining the genetics of the so-called E. lambei from the permafrost of Alaska, found that the variation was within that of modern horses, which translates into E. lambeiactually being E. caballus, genetically. The molecular biology evidence is incontrovertible and indisputable, but it is also supported by the interpretation of the fossil record, as well.

Finally, very recent work (Orlando et al. 2009) that examined the evolutionary history of a variety of non‐caballine equids across four continents, found evidence for taxonomic “oversplitting” from species to generic levels. This overspitting was based primarily on late‐Pleistocene fossil remains without the benefit of molecular data. A co‐author of this study, Dr. Alan Cooper, of the Australian Centre for Ancient DNA, stated, “Overall, the new genetic results suggest that we have underestimated how much a single species can vary over time and space, and mistakenly assumed more diversity among extinct species of megafauna.”

The fact that horses were domesticated before they were reintroduced matters little from a biological viewpoint. They are the same species that originated here, and whether or not they were domesticated is quite irrelevant. Domestication altered little biology, and we can see that in the phenomenon called “going wild,” where wild horses revert to ancient behavioral patterns. Feist and McCullough (1976) dubbed this “social conservation” in his paper on behavior patterns and communication in the Pryor Mountain wild horses. The reemergence of primitive behaviors, resembling those of the plains zebra, indicated to him the shallowness of domestication in horses.

The issue of feralization and the use of the word “feral” is a human construct that has little biological meaning except in transitory behavior, usually forced on the animal in some manner. Consider this parallel. E. Przewalskii (Mongolian wild horse) disappeared from Mongolia a hundred years ago. It has survived since then in zoos. That is not domestication in the classic sense, but it is captivity, with keepers providing food and veterinarians providing health care. Then they were released during the 1990s and now repopulate their native range in Mongolia. Are they a reintroduced native species or not? And what is the difference between them and E. caballus in North America, except for the time frame and degree of captivity?

The key element in describing an animal as a native species is (1) where it originated; and (2) whether or not it co‐evolved with its habitat. Clearly, E. caballus did both, here in North American. There might be arguments about “breeds,” but there are no scientific grounds for arguments about “species.”

The non‐native, feral, and exotic designations given by agencies are not merely reflections of their failure to understand modern science but also a reflection of their desire to preserve old ways of thinking to keep alive the conflict between a species (wild horses), with no economic value anymore (by law), and the economic value of commercial livestock.

Native status for wild horses would place these animals, under law, within a new category for management considerations. As a form of wildlife, embedded with wildness, ancient behavioral patterns, and the morphology and biology of a sensitive prey species, they may finally be released from the “livestock‐gone‐loose” appellation.

Please cite as: Kirkpatrick, J.F., and P.M. Fazio. Revised January 2010. Wild Horses as Native North American Wildlife. The Science and Conservation Center, ZooMontana, Billings. 8 pages.

 

LITERATURE CITED

 

Azzaroli, A. 1990. The genus Equus in Europe. pp. 339‐356 in: European Neogene mammal chronology (E.H. Lindsay, V. Fahlbuech, and P. Mein, eds.). Plenum Press, New York.

 

Azzaroli, A. 1992. Ascent and decline of monodactyl equids: A case for prehistoric overkill. Annales Zoologica Fennici 28:151‐163.

 

Azzaroli, A. 1995. A synopsis of the Quaternary species of Equus in North America. Bollttino della Societa Paleontologica Italiana. 34:205‐221.

 

Azzaroli, A., and M.R. Voorhies. 1990. The genus Equus in North America: The Blancan species. Paleontologica Italiana 80:175‐198.

 

Benirschke K., N. Malouf, R.J. Low, and H. Heck. 1965. Chromosome compliment: Difference between Equus caballus and Equus przewalskii Polliakoff. Science 148:382‐383.

 

Fazio, P.M. 1995. ʺThe Fight to Save a Memory: Creation of the Pryor Mountain Wild Horse Range (1968) and Evolving Federal Wild Horse Protection through 7 1971,ʺ doctoral dissertation, Texas A&M University, College Station, p. 21.

 

Feist, J.D., and D.R. McCullough, Behavior Patterns and Communication in Feral Horses, Z. Tierpsychol. 41:337‐371.

 

Forstén, A. 1988. Middle Pleistocene replacement of stenoid horses by caballoid horses ecological implications. Paleogeography, Paleoclimatology, Paleoecology 65:23‐33.

 

Forstén, A. 1992. Mitochondrial‐DNA timetable and the evolution of Equus: Comparison of molecular and paleontological evidence. Ann. Zool. Fennici 28: 301‐309.

 

George, Jr., M., and O.A. Ryder. 1986. Mitochondrial DNA evolution in the genusEquus. Mol. Biol. Evol. 3:535‐546.

 

Hibbard C.W. 1955. Pleistocene vertebrates from the upper Becarra (Becarra Superior) Formation, Valley of Tequixquiac, Mexico, with notes on other Pleistocene forms. Contributions from the Museum of Paleontology, University of Michigan, 12:47‐96.

 

Hofreiter, M., Serre, D. Poinar, H.N. Kuch, M., Pääbo, S. 2001. Ancient DNA. Nature Reviews Genetics. 2(5), 353‐359.

 

Kruger et al. 2005. Phylogenetic analysis and species allocation of individual equids using microsatellite data. J. Anim. Breed. Genet. 122 (Suppl. 1):78‐86.

 

McGrew, P.O. 1944. An early Pleistocene (Blancan) fauna from Nebraska. Field Museum of Natural History, Geology Series, 9:33‐66.

 

Orlando, L. et al. 2009. Revising the recent evolutionary history of equids using ancient DNA. Proc. Nat. Acad. Sci. www.pnas.org/cai/doi/10.1073/pnas.0903672106

 

Quinn, J.H. 1957. Pleistocene Equidae of Texas. University of Texas, Bureau of Economic Geology, Report of Investigations 33:1‐51.

 

Vilà, C., J.A. Leonard, A. Götherström, S. Marklund, K. Sandberg, K. Lidén, R. K. Wayne, H. Ellegren. 2001. Widespread origins of domestic horse lineages. Science 291: 474‐477. 8 Weinstock, J.E., A. Sher Willerslev, W. Tong, S.Y.W. Ho, D. Rubnestein, J. Storer, J. Burns, L. Martin, C. Bravi, A. Prieto, D. Froese, E. Scott, L. Xulong, A. Cooper. 2005. Evolution, systematics, and the phylogeography of Pleistocene horses in the New World: a molecular perspective. PLoS Biology 3:1‐7.

 

Winans M.C. 1989. A quantitative study of North American fossil species of the genusEquus. pp. 262‐297, in: The Evolution of Perissodactyles (D.R. Prothero and R.M. Schoch, eds.). Oxford University Press, New York, NY.

 

Ω

 

Jay F. Kirkpatrick, Director, The Science and Conservation Center, ZooMontana, Billings, holds a Ph.D. in reproductive physiology from the College of Veterinary Medicine at Cornell University.

 

~

 

Patricia M. Fazio, Research Fellow, The Science and Conservation Center, ZooMontana, Billings, holds a B.S. in agriculture (animal husbandry/biology) from Cornell University, and M.S. and Ph.D. degrees in environmental history from the University of Wyoming and Texas A&M University, College Station, respectively. Her dissertation was a creation history of the Pryor Mountain Wild Horse Range, Montana/Wyoming.

 

Please note: This document is the sole intellectual property of Drs. Jay F. Kirkpatrick and Patricia M. Fazio. As such, altering of content, in any manner, is strictly prohibited. However, this article may be copied and distributed freely in hardcopy, electronic, or Website form, for educational purposes only.

 

BLM must provide basic care #Shade4Mustangs

“Meet Tarzan, a 6-7 week old colt orphaned during an ’emergency’ roundup of the Seaman NV herd. He was fortunate to be adopted by photographer Jeanne Nations who used an old tarp to make him this simple shaded shelter in the corner of his paddock. It’s Tarzan’s shade, shelter & sanctuary. Do the foals at Palomino Valley need and deserve any less?” ~ Carl Mrozek, filmmaker and Advisory Board Member of Protect Mustangs.

Read Jeanne’s description of Tarzan’s attachment to his shady retreat:

“Tarzan wanders in and out of the shelter all day. He will go eat some hay, drink water then go back to the shade, especially during the hot afternoons where he’ll take siestas. If he ‘s frightened by dogs, thunder, loud noises…anything, he’ll run there. It’s his safe haven and he spends the night there too.

Summer temps here hit 90-95 degrees & sometimes the 100s, so there is definitely a need for horses to have shade and burros too.”

Jeanne is planning a more permanent shelter, but didn’t want Tarzan to suffer through the heat of summer without some kind of shade. Why can’t BLM do the same ? They demand no less from all adopters!”

Please sign and share the Petition for Emergency Shade: http://www.change.org/petitions/bring-emergency-shade-for-captive-wild-horses-and-burros

 Shade in Wild Photo © Molly Malone FB

#Breaking: Requesting Secretary Jewell call for a moratorium on roundups and population studies before controlling fertility of wild horses and burros

Secretary Sally Jewell Photo by BLM

Secretary Sally Jewell Photo by BLM

Letter to the Secretary of Interior, Sally Jewell on Flag Day

June 14th, 2013

Dear Secretary Jewell,

First of all we would like to congratulate you on your new position as Secretary of Interior.

The National Academy of Sciences published a report last week. According to a press release from NAS released Wednesday, “The U.S. Bureau of Land Management’s (BLM) current practice of removing free-ranging horses from public lands promotes a high population growth rate, and maintaining them in long-term holding facilities is both economically unsustainable and incongruent with public expectations, says a new report by the National Research Council.”

Despite the fact that there is no evidence of overpopulation, The NAS is suggesting a broad use of fertility control–sterilization and risky birth control approved by the EPA as a “restricted use pesticide”.

You can read about the issue in the Washington Post here as it went viral around the world: http://articles.washingtonpost.com/2013-06-05/national/39747528_1_roundups-fertility-population-growth

The FDA would not approve this fertility control drug for equines. If the drugs/pesticides/birth control are not dangerous, then why haven’t they been approved for domestic horses?

Science has proven wild horses are returned-natives. Any designation of them as “pests” surely will be challenged in the courts in the near future.

We are requesting a moratorium on roundups and a scientific study to determine the actual population as well as birthrate–without the herds feeling an urgent need to reproduce because of excessive roundups since 2009. We kindly request this occur before any action to sterilize or give birth control labelled a “restricted use pesticide” to America’s wild horses and burros.

There are several health risks involved with giving free-roaming mares PZP, GonaCon® and other immunocontraceptives as well as sterilizing them or the stallions. I will provide more information in another letter.

We also request you consider the fact that managing wild horses and burros with fertility control would domesticate them because man would be choosing who breeds when, for more than a million years, Equus caballus has evolved through the survival of the fittest model.

The environment is changing and with it wildlife must evolve to survive. We are deeply concerned that using fertility control would manage them to extinction due to human interference with natural selection.

We don’t have any conflicts of interests as we are not funded by organizations and or companies connected to fertility control products and services. We are asking you for your help during this crisis because we represent many Americans who care about wild horses and burros.

Advocates estimate there are only 18,000 wild horses left in the wild. The BLM has been claiming their numbers are in the high 30,000 to justify large-scale, costly roundups and removals since 2009. The BLM has a huge budget for the program and no scientific proof of population–no headcount. Their overpopulation claim lacks scientific evidence as we claimed and was determined by the National Academy of Sciences

It’s time for wild horses and burros to be managed using real science not junk science. We encourage you to put a moratorium on roundups and complete a comprehensive scientific population study before you agree to using any fertility controls on our wild herds.

Thank you for helping save America’s wild horses and burros from being managed to extinction.

Sincerely,

Anne Novak

 

Anne Novak

Executive Director

Protect Mustangs

San Francisco Bay Area

 

As seen in the Washington Post

Read about native wild horses: http://protectmustangs.org/?page_id=562 

Protect Mustangs on Facebook

Protect Mustangs on Twitter

Protect Mustangs on YouTube

Protect Mustangs in the News

www.ProtectMustangs.org

Protect Mustangs is devoted to protecting native wild horses. Our mission is to educate the public about the indigenous wild horse, protect and research American wild horses on the range and help those who have lost their freedom.

 

#WildHorses #Environment #animals #horses #fracking #food #water #green #science #Foodie #America #Nature #News #Breaking @SecretaryJewell